One-sided Support Vector Regression for Multiclass Cost-sensitive Classification

نویسندگان

  • Han-Hsing Tu
  • Hsuan-Tien Lin
چکیده

We propose a novel approach that reduces cost-sensitive classification to one-sided regression. The approach stores the cost information in the regression labels and encodes the minimum-cost prediction with the onesided loss. The simple approach is accompanied by a solid theoretical guarantee of error transformation, and can be used to cast any one-sided regression method as a costsensitive classification algorithm. To validate the proposed reduction approach, we design a new cost-sensitive classification algorithm by coupling the approach with a variant of the support vector machine (SVM) for one-sided regression. The proposed algorithm can be viewed as a theoretically justified extension of the popular one-versus-all SVM. Experimental results demonstrate that the algorithm is not only superior to traditional one-versus-all SVM for cost-sensitive classification, but also better than many existing SVM-based costsensitive classification algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Formulation for Cost-Sensitive Two Group Support Vector Machine with Multiple Error Rate

Support vector machine (SVM) is a popular classification technique which classifies data using a max-margin separator hyperplane. The normal vector and bias of the mentioned hyperplane is determined by solving a quadratic model implies that SVM training confronts by an optimization problem. Among of the extensions of SVM, cost-sensitive scheme refers to a model with multiple costs which conside...

متن کامل

Multiclass Support Vector Classification via Regression

The problem of multiclass classification is considered and resolved through the multiresponse linear regression approach. Scores are used to encode the class labels into multivariate responses. The regression of scores on input attributes is used to extract a lowdimensional linear discriminant subspace. The classification training and prediction are carried out in this low-dimensional subspace....

متن کامل

The Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression

Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...

متن کامل

Multiclass Approaches for Support Vector Machine Based Land Cover Classification

SVMs were initially developed to perform binary classification; though, applications of binary classification are very limited. Most of the practical applications involve multiclass classification, especially in remote sensing land cover classification. A number of methods have been proposed to implement SVMs to produce multiclass classification. A number of methods to generate multiclass SVMs ...

متن کامل

Reduction from Cost-Sensitive Multiclass Classification to One-versus-One Binary Classification

Many real-world applications require varying costs for different types of mis-classification errors. Such a cost-sensitive classification setup can be very different from the regular classification one, especially in the multiclass case. Thus, traditional meta-algorithms for regular multiclass classification, such as the popular one-versus-one approach, may not always work well under the cost-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010